Exposure Assessment: A How to Guide

- Participant Take-Aways from this Presentation:
 - Understand why qualitative exposure assessments should be used
 - Describe AIHA’s Basic Workplace Characterization
 - Explore Qualitative Assessment Tools
 - Review AIHA’s new Exposure Assessment Checklist Tool
Exposure Assessment: A How to Guide

- How do we traditionally define industrial hygiene exposure assessment?
 - What do we think is done?
Exposure Assessment: A How to Guide

- We often think exposure assessment is primarily quantitative measurement.
 - Air sampling, noise measurements, etc.

- How good are quantitative measurements?
 - Of 1.4 million samples from OSHA nearly 50% are non-detects
 - 20% of the samples above are double the exposure limit\(^1\).

- Are we spending too many resources assessing exposure quantitatively?
Exposure Assessment: A How to Guide

- How much time do you spend with qualitative assessment tools before moving to quantitative methods?
Exposure Assessment: AIHA’s Basic Characterization of Workplace

- First Step in Exposure Assessment: Gather Information
 - Goal: Collect Information on workplace, work force, agents, etc.

- Sources of Information
 - SDSs
 - Workers
 - Walk-around Surveys
 - Engineers
 - Records - drawings, process, medical, employment, maintenance, monitoring
 - Literature search
 - OELs
Exposure Assessment: AIHA’s Basic Characterization of Workplace

- Questions to Ask:
 - What are the hazardous agents? In what quantities?
 - What are the health effects?
 - What are the OELs
 - What are significant sources of exposure and how do workers interact with them?
 - What processes, operations, tasks, and work practices pose significant sources of exposure?
 - What are the process conditions? Temperature? Operating speed? Transfer points?
 - What controls are in place?
Exposure Assessment: A How to Guide

- Learning the process is one of the most important assessment methods

- Process and Agent inputs
- Intermediates Produced
- Final Product
- Waste Produced
- Understand how Equipment Functions
- Understand Cleaning Methods
- Cleaning/Maintenance - Non Routine Tasks
Observations

- Sensory Perception - Eyes, Ears, Smell
- Controls in Place
- Employee Work Practices
- Routes of Potential Exposure
Exposure Assessment: Qualitative Assessment Tools

- Rule of 10s
 - Fraction of saturated Vapor Pressure to calculate approximate exposure
 - Fraction is based on the exposure controls in place

<table>
<thead>
<tr>
<th>Level of Control</th>
<th>Fraction of Saturated Vapor Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confined Space - No Circulation</td>
<td>1/10th of Saturation</td>
</tr>
<tr>
<td>Poor - Limited Circulation</td>
<td>1/100th of Saturation</td>
</tr>
<tr>
<td>Good - General - 6 air changes per hour</td>
<td>1/1000th of Saturation</td>
</tr>
<tr>
<td>Local Exhaust Ventilation Capture</td>
<td>1/10,000th of Saturation</td>
</tr>
<tr>
<td>Containment</td>
<td>1/100,000th of Saturation</td>
</tr>
</tbody>
</table>

Saturation Vapor Concentration (ppm) = \(\frac{\text{VP of Compound (mmHg)}}{760 \times 1,000,000} \)
Exposure Assessment: Qualitative Assessment Tools

- Rule of Ten Example
 - Methyl Ethyl Ketone (MEK) has a Vapor Pressure of 89.7 mmHg (at 25 °C)

 - Saturation Vapor Concentration (in ppm) = $\frac{89.7}{760} \times 1,000,000 = 118,000$ ppm

- What is the estimated concentration in air under “Good” control conditions?

- What is the concentration in air using local exhaust capture?
Exposure Assessment: Qualitative Assessment Tools

- Vapor Pressure Index or Vapor Hazard Ratio (VHR)

- $VHR = \frac{VP_{agent}}{OEL_{agent}}$

- This can be used for prioritization of quantitative measurements

- It is also a useful tool when comparing a possible substitution of one material in the process for another and not relying on OELs alone.
Exposure Assessment: Qualitative Assessment Tools

- **Vapor Hazard Ratio Link to Ventilation**

<table>
<thead>
<tr>
<th>Vapor Hazard Ratio Scale</th>
<th>Vapor Hazard Ratio</th>
<th>Required Level of Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>< 0.05</td>
<td>General Ventilation 3 to 6 air changes/hour</td>
</tr>
<tr>
<td>2</td>
<td>0.05 to < 1</td>
<td>Good General Ventilation (GGV) 6 to 12 air changes / hour</td>
</tr>
<tr>
<td>3</td>
<td>1 to < 25</td>
<td>GGV with capture at emission sources</td>
</tr>
<tr>
<td>4</td>
<td>25 to < 500</td>
<td>Capture at Emission Sources and Containment where practical</td>
</tr>
<tr>
<td>5</td>
<td>500 to < 3000</td>
<td>Containment</td>
</tr>
<tr>
<td>6</td>
<td>≥ 3000</td>
<td>Primary and Secondary Containment</td>
</tr>
</tbody>
</table>
Exposure Assessment: Qualitative Assessment Tools

- Vapor Hazard Ratio Example

 - Benzene - VP = 95.2 mmHg and OEL of 0.5 ppm
 - Vapor Hazard Ratio Benzene = 190.4

 - MEK - VP = 86.7 mmHg and OEL of 200 PPM
 - Vapor Hazard Ratio of 0.42

 - Toulene - VP = 28.4 mmHg and OEL of 20 PPM
 - Vapor Hazard Ratio of 1.42

- What are the Ventilation Requirements for each substance
Exposure Assessment: Qualitative Assessment Tools

- Particulate Hazard Ratio
- Control Bands Based on OEL of Substance

<table>
<thead>
<tr>
<th>Particulate Hazard Ratio</th>
<th>Agent’s OEL (mg/m³)</th>
<th>Required Level of Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>5</td>
<td>General Ventilation 2 to 4 air changes/hour</td>
</tr>
<tr>
<td>2</td>
<td>≤5 to 1</td>
<td>Good General Ventilation (GGV) 4 to 6 air changes/hour</td>
</tr>
<tr>
<td>3</td>
<td>≤1 to 0.1</td>
<td>Good General Ventilation (GGV) 6 to 8 air changes/hour</td>
</tr>
<tr>
<td>4</td>
<td>≤0.1 to 0.01</td>
<td>Capture at Emission Sources and Containment where practical</td>
</tr>
<tr>
<td>5</td>
<td>≤0.01 to 0.001</td>
<td>Containment</td>
</tr>
<tr>
<td>6</td>
<td>≤0.001</td>
<td>Primary and Secondary Containment</td>
</tr>
</tbody>
</table>
Exposure Assessment: Qualitative Assessment Tools

- Particulate Hazard Ratio
 - Dustiness of a particulate
 - Function of:
 - Size
 - Shape
 - Electrostatic charge
 - Moisture content
 - Density
 - Rule of Thumb for very fine dust droplet size, engineering controls should be increased by one level
Exposure Assessment: Qualitative Assessment Tools

- Vapor Pressure and Temperature
 - Vapor Pressure is a function of the temperature
 - Most VPs for a substance are at 25° C
 - Antoine’s Law
 - Can calculate a vapor pressure for a substance at different temperatures if certain constants are known

- Mixtures
 - Raoult’s Law
 - Calculate a mixture as the vapor pressures are proportional to the amount of each substance - assumes ideal gas behavior.
Exposure Assessment: Exposure Assessment Checklist Tool

- Uses the tools discussed above and puts them in a tool to easily estimate the AIHA Exposure Control Ratings based on the 95th percentile exposure.

<table>
<thead>
<tr>
<th>Exposure Control Ratings *</th>
<th>Cutoff (%OEL)</th>
<th>Confidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(X_{0.95} \leq 1%)</td>
<td>High</td>
</tr>
<tr>
<td>1</td>
<td>(1% < X_{0.95} \leq 10%)</td>
<td>Medium</td>
</tr>
<tr>
<td>2</td>
<td>(10% < X_{0.95} \leq 50%)</td>
<td>Low</td>
</tr>
<tr>
<td>3</td>
<td>(50% < X_{0.95} \leq 100%)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(X_{0.95} > 100%)</td>
<td></td>
</tr>
</tbody>
</table>
Exposure Assessment: Exposure Assessment Checklist Tool

- The AIHA Checklist Tool
 - https://www.aiha.org/get-involved/VolunteerGroups/Pages/Exposure-Assessment-Strategies-Committee.aspx

- Demonstration
Exposure Assessment: A How to Guide

- Limitations
 - Best for pure volatiles or semi volatile compounds
 - Doesn’t take into consideration dermal exposure route
 - Dustiness issue

- Benefits
 - Can weed out the Non Detects and Obvious Overexposures before taking quantitative.
Exposure Assessments: A How to Guide
Questions?

Exposure Assessments: A How to Guide
Bibliography

